

SOIL ACCRETION AND ORGANIC CARBON BURIAL OVER CENTENNIAL AND MILLENNIAL TIME SCALES ON MANGROVE ISLANDS IN THE LOWER FLORIDA KEYS

Amanda R. Chappel¹, Joseph M. Smoak¹, Ryan P. Moyer², Nicole S. Khan³, Christian J. Sanders⁴, Brad E. Rosenheim⁵

¹University of South Florida ²Florida Fish and Wildlife Conservation Commission ³Asian School of the Environment, Nanyang Technological University ⁴National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University ⁵College of Marine Science, University of South Florida

Rationale

- Vertical soil accretion has kept pace with the rate of relative sea-level rise (SLR), however current rates are accelerating
- Surpass observed rates of accretion
- Assessing temporal variability in soil accretion and organic carbon (OC) burial rates can aid in more accurate predictions

Study area

Lower Florida Keys

Florida Keys National Wildlife Refuge Complex

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS user community.

Coring locations

Marquesas Keys

Overwash berms on exterior of island with a mangrove forest **basin** that surrounds a center lagoon Snipe Key

Elongated island with a red mangrove forest fringe

Big Pine Key

Narrow mangrove fringe Rapid transition to salt barren/marsh habitat Near residential development

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS user community.

Objective

Compared temporal variability in sedimentation rates
 Soil accretion
 Organic carbon burial

- Tested whether a strong nonlinearity existed temporally
- Two different radiometric dating techniques
 Lead-210
 Carbon-14

Methods: Radiometric Dating

Core collection via push corer

Core extruding for gravimetric analysis

Carbon-14: macrofossils & mangrove pollen (NOSAMS)

Lead-210: Constant Rate of Supply (CRS) model

(Appleby & Oldfield 1978; Appleby 2001; Smoak et al. 2013; Breithaupt et al. 2014)

Intrinsic germanium well detector coupled to a multichannel analyzer

Radiocarbon age-depth model

In situ peat production for approximately 6 ka BP (mid-Holocene)

- Limited age discrepancies
- Long-term accretion and OC burial rates calculated

Calibrated ages: 616 ± 48.5 to 6092 ± 49.5 Cal yr BP

Determined: rates change over time

- Flux observed from one interval to the next is driven by changes to soil delivery rate and/or to soil degradation or removal rate (Zimmerman & Canuel 2000; Breithaupt et al. 2014)
- Coastal wetlands do not sequester carbon at a continuous rate (Breithaupt et al. 2012)

Organic carbon burial rates

Significant difference among timescales

100-year rates were lowest

- Changes in allochthonous input and autochthonous production
 (Breithaupt et al. 2012; Smoak et al. 2013; Breithaupt et al. 2014)
- Post-deposition transformations
 (DeLaune et al.1994; Parkinson et al. 1994; Kirwan & Megonigal 2013; Morris et al. 2016; Parkinson et al. 2017; Breithaupt et al. 2018)
- Changes in rates of SLR
 - ✤ Impact soil chemistry

Centennial vs. millennial rates

Millennial rates lower than centennial rates

- Feedback mechanisms happen over different timescale and change over time (Breithaupt et al. 2018)
 - Soil degradation
 - Microbial diagenesis
 - Nutrient reservoir & pump
 (Holguin et al. 2001; Dittmar et al. 2006; Chambers et al. 2011; Adame & Lovelock 2011; Maher et al. 2013; Breithaupt et al. 2018)
- Adjusting to sea-level rise?
 - Direct relationship with

accretion rates (Kirwan & Megonigal 2013; Krauss et al. 2014; Woodroffe et al. 2016; Breithaupt et al. 2018)

Organic carbon burial and accretion rates

- Organic carbon makes up 1/3 of soil organic matter (SOM)
- Significant relationship between
 OC burial and accretion rates
- SOM found as a driver of accretion rates (Breithaupt et al. 2017)
- In situ OC production induces soil accretion
 - Both influenced by SLR

Adjusting to increased rates of SLR?

- Significant relationship exists between sea-level rise and accretion rates
- Low R² value
 - Lag between accretion rates adjusting to SLR rates?
- Relatively small data set
 - Need to build on this data from other sites in SW Florida

Regression analysis $R^2 = 0.36$; p < 0.0001

Accretion rates

Compared to rates of sea-level rise

Accretion rates falling below necessary vertical change to avoid submergence

Direct relationship exist

(Kirwan & Megonigal 2013; Krauss et al. 2014; Woodroffe et al. 2016; Breithaupt et al. 2018)

- The 50- and 100-yr mean accretion rates were within error of the 50- and 100- yr rates of SLR
- An increase in the mean rate of SLR in the most recent decade support a trend of acceleration (Wdowinski 2016)
- Tidal range 1 m (Key West tide gauge)

Conclusion

- Mangrove peat has been deposited in the Florida Keys since mid-Holocene
- Sediment delivery and soil preservation change over time
- Significant difference among timescales
- Caution necessary when comparing rates of different timescales
- Centennial rates are most representative
- Accretion rates are not keeping pace with most-recent decadal rate of SLR

Acknowledgments

Emma Dontis Joshua Breithaupt Kailey Comparetto Kara Radabaugh Simon Engelhart Andrew Kemp Jessica Jacobs Ashley Huber Melissa Bownik Dana Parkinson Ryan Venturelli Megan Proctor Reba Campbell Taylor Nielsen Ioana Bociu

Funding provided by: Florida's State Wildlife Grant Program

achappel1@usfsp.edu Amanda.chappel@Stantec.com #protectcoastalwetlands

